Discarding Insignificant Rules during Impact Rule Discovery in Large, Dense Databases
نویسندگان
چکیده
Considerable progress has been made on how to reduce the number of spurious exploratory rules with quantitative attributes. However, little has been done for rules with undiscretized quantitative attributes. It is argued that propositional rules can not effectively describe the interactions between quantitative and qualitative attributes. Aumann and Lindell proposed quantitative association rules to provide a better description of such relationship, together with a rule pruning techniques . Since their technique is based on the frequent itemset framework, it is not suitable for rule discovery in large, dense databases. In this paper, an efficient technique for automatically discarding insignificant rules during rule discovery is proposed, based on the OPUS search algorithm. Experiments demonstrate that the algorithm we propose can efficiently remove potentially uninteresting rules even in very large, dense databases.
منابع مشابه
Pruning Derivative Partial Rules During Impact Rule Discovery
Because exploratory rule discovery works with data that is only a sample of the phenomena to be investigated, some resulting rules may appear interesting only by chance. Techniques are developed for automatically discarding statistically insignificant exploratory rules that cannot survive a hypothesis with regard to its ancestors. We call such insignificant rules derivative extended rules. In t...
متن کاملEfficiently Identifying Exploratory Rules' Significance
How to efficiently discard potentially uninteresting rules in exploratory rule discovery is one of the important research foci in data mining. Many researchers have presented algorithms to automatically remove potentially uninteresting rules utilizing background knowledge and user-specified constraints. Identifying the significance of exploratory rules using a significance test is desirable for...
متن کاملMining Multiple-Level Association Rules in Large Databases
ÐA top-down progressive deepening method is developed for efficient mining of multiple-level association rules from large transaction databases based on the Apriori principle. A group of variant algorithms is proposed based on the ways of sharing intermediate results, with the relative performance tested and analyzed. The enforcement of different interestingness measurements to find more intere...
متن کاملDiscovery of Multiple-Level Association Rules from Large Databases
Discovery of association rules from large databases has been a focused topic recently in the research into database mining. Previous studies discover association rules at a single concept level, however, mining association rules at multiple concept levels may lead to nding more informative and re ned knowledge from data. In this paper, we study e cient methods for mining multiple-level associat...
متن کاملReduction of Number of Association Rules with Inter Itemset Distance in Transaction Databases
Association Rule discovery has been an important problem of investigation in knowledge discovery and data mining. An association rule describes associations among the sets of items which occur together in transactions of databases.The Association Rule mining task consists of finding the frequent itemsets and the rules in the form of conditional implications with respect to some prespecified thr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005